Abstract

Dental implants are considered to be one of several treatment options that can be used to replace missing teeth. The objective of the study is to examine and compare the biomechanics of zygomatic and pterygoid implants planned on the atrophic maxilla with three different bone types. An in vitro finite element study was conducted on a three-dimensional model of zygomatic and pterygoid implants. In a total of 24 implants, two bilateral zygomatic and pterygoid implants with two anterior dental implants were inserted in models. 150 N vertical occlusal and 300 N load on masseter and medial pterygoid were simulated on the modeled prosthesis. The data were processed with ANSYS software. The stress on and deformations of the bones and implants were observed and compared. When comparing the D4, D3, and D2 bones in subgroup I with zygomatic implants, the D2 bone was subjected to less stress compared to D3 and D4. The smallest displacement (0.125784mm) was seen in D4 followed by the largest displacement (0.74073mm) in D2. Similarly, when comparing the D2, D3, and D4 bone in subgroup II with pterygoid implants, the D2 bone in the atrophic maxilla received the least amount of stress from the pterygoid implants compared to D3 and D4. Furthermore, the smallest displacement (0.030934mm) was seen in D2, and the largest (0.046319mm) in D4. Results suggest firstly, that the overall stress was better distributed in D2 bone and secondly, the pterygoid implant showed higher stress concentration than the zygomatic implant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.