Abstract

BackgroundDifferent interbody grafts have been employed and evaluated for spinal fusion surgery. The Memory Metal Minimal Access Cage (MAC) is a hollow horseshoe shaped interbody fusion concept which provides a potentially major advantage with their small cage contact area and large graft space in comparison with other vertical cages.MethodsThis Biomechanical Cadaveric Study evaluates the primary stability and the amount of acute subsidence occurring in two new MAC cage designs; the Niti-l and Niti-s. Both cages were made of nitinol in the form of a wedge-shaped horseshoe with spikes on the edges. Differences were the higher weight and larger tranverse section area of the Niti-l due to his specific design with two different layers of thickness. Biomechanical axial compression tests were performed on ten fresh-frozen T11-L5 vertebral bodies.ResultsA direct relation between force at failure and BMD was found (p < 0.001). The displacements in the vertebral body at an axial force of 800 N were 1.91 mm and 1.88 mm for the NiTi-l and NiTi-s cage, respectively. The mean failure load for the NiTi-l cages was 2043 N, and 1866 N for de NiTi-s cages. No significant difference was established between the two cages.ConclusionThe biomechanical strength of both NiTi-l and NiTi-s cages is good and comparable to each other with a limited amount of short-term subsidence after the initial implantation of the cage spikes into the bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.