Abstract

Femoroacetabular impingement as a result of slipped capital femoral epiphysis (SCFE) has been treated traditionally with a proximal femoral osteotomy, but open and arthroscopic femoral osteoplasty is becoming increasingly popular. Cam lesions result from excess bone primarily at the anterolateral femoral head-neck junction. SCFEs result from posterior and inferior slippage of the femoral epiphysis, causing the metaphysis to move anteriorly. This study's purpose was to compare fourth-generation sawbones standard femurs with SCFE femurs to determine whether bone resection from the anterior metaphysis results in similar biomechanical properties. A custom fourth-generation composite SCFE sawbone was created with a 30-degree slip angle. Control group consisted of fourth-generation composite standard nondeformed medium femurs. The femoral neck at the head-neck junction was divided into 4 quadrants. All resections were done in the anterolateral quadrant. Twenty SCFE sawbones and 20 standard sawbones were divided into 4 subgroups based on resection depths of 0%, 10%, 30%, and 50% of the metaphysis at the head-neck junction. After resection, all proximal femurs were loaded to failure in an Instron testing machine to determine the ultimate load to failure, stiffness, and energy to failure. The standard femurs were significantly stronger than the SCFE femurs (P<0.001) and the strength of the femurs decreased significantly as the resection amount increased (P<0.001). Similarly, the standard femurs withstood significantly more energy before failing than the SCFE femurs (P<0.001) and the energy to failure decreased significantly with varying resection amounts (P<0.001). SCFE femurs demonstrate a significant reduction in strength and energy to failure after osteoplasty compared with nondeformed femurs in a sawbone model. Strength and energy to failure are inversely proportional to the depth of bone resection. Aggressive femoral neck osteoplasty for treatment of a SCFE deformity may lead to increased risk of fracture. Further studies are necessary to determine the safe depth of resection in a clinical setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.