Abstract

Here we investigated the biomechanical properties of spinal segments in patients with degenerative lumbar spondylolisthesis (DLS) using a novel intraoperative measurement system. The measurement system comprised spinous process holders, a motion generator, a load cell, an optical displacement transducer, and a computer. Cyclic displacement of the holders produced flexion-extension of the segment with all ligamentous structures intact. Stiffness, absorption energy (AE), and neutral zone (NZ) were determined from the load-deformation data. Forty-one patients with DLS (M/F = 15/26, mean age 68.6 years; Group D) were studied. Adjacent segments with normal discs in six patients (M/F = 3/3, mean age 35 years) were included as a control group (Group N). Flexion stiffness was significantly lower in Group D than in Group N. The NZ, however, was significantly greater in Group D than in Group N. Thus, compared to normal segments, spinal segments with DLS had a lower flexion stiffness and a higher NZ. NZs in Group D were, however, widely distributed compared to those in Group N that showed NZ <2 mm/N in all cases, suggesting that the segment with DLS is not always unstable and that the segments with NZ >2 mm/N can be considered as unstable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call