Abstract

Tibial bone defect is a critical problem for revision knee arthroplasty. Instead of using metallic spacer or cement, biodegradable scaffolds could be an alternative solution. A numerical model of a revision knee arthroplasty was thus developed to estimate the mechanical resistance of the scaffold in this demanding situation. The tibia, scaffold, and prosthesis were represented by simplified parameterised geometries. The maximal gait cycle force was applied asymmetrically to simulate a critical loading. Several parameters were analysed: 1) inter-individual variability, 2) cortical bone stiffness, 3) cortical bone thickness, 4) prosthesis fixation quality, and 5) scaffold thickness. The calculated scaffold strain was compared to its experimental ultimate strain. Among the tested parameters, failure was only predicted with scaffold thickness below 5 mm. This study suggests that biodegradable bone scaffolds could be used to fill bone defects in revision knee arthroplasty, but scaffold size seems to be the limiting factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.