Abstract

It is not yet well understood to what extent different implant-abutment mismatch sizes and implant-abutment connection types may influence the peri-implant biomechanical environment of implants in different clinical situations. Computed tomography-based finite element models comprising a maxillary central incisor socket and 4.5 × 13 mm outer-diameter implants with external and internal hex connection types were constructed. The abutments were designed with diameters of 3.5 mm (platform switching [PS] with 1 mm of diametral mismatch [PS - 1]), 4.0 mm (PS with 0.5 mm of diametral mismatch [PS - 0.5]), and 4.5 mm (conventional matching implant-abutment design [CD]). Analysis of variance at the 95% confidence interval was used to evaluate peak equivalent strain (EQV strain) in the bone, bone volume affected by a strain >4,000 με (EQV strain >4,000 με), the peak von Mises stress (EQV stress) in abutment screw, and the bone-implant relative displacement. Similar bone strain levels (EQV strain and EQV strain >4,000 με) were encountered in PS - 1, PS - 0.5, and CD models for immediately placed implants, independent of the connection type. For immediately loaded implants, slightly smaller peak EQV strain and EQV strain >4,000 με were found for PS - 1. However, for both connection types in osseointegrated models, the higher the mismatch size, the lesser the amount of strain found. The increase in mismatch size of PS configuration results in a significant decrease of strain levels in bone for osseointegrated implants, principally for external hex connections. No significant effect of PS could be noted in immediately placed implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.