Abstract

Pedicle screw fixation is a well-established procedure for various spinal disorders. However, pedicle screws failures are still reported. Therefore, there is a need for a greater understanding of the pedicle screw failure mechanism. This experimental study investigates the biomechanical stability of pedicle screws using a synthetic bone surrogate with a special focus on the screw loosening mechanism. Pedicle screws have been inserted in thirty six polyurethane foam blocks of three different densities. In half of the specimens from each density group, pedicle screws were submitted to cyclic bending (toggling) before pullout. The rest of specimens were solely loaded in axial pullout. The peak pullout force and stiffness were determined from load-displacement curve of each specimen. Statistical analyses were performed to investigate on the effect of toggling and bone surrogate density on the pedicle screw's pullout force. The results suggest that the pullout force and stiffness were significantly affected by toggling and density. Higher pullout forces resulted from higher grades of density. The proposed method allowed investigating the pedicle screw loosening mechanism. However, conducing further experimental tests on animal or cadaveric vertebrae are needed to confirm these findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call