Abstract

PurposeThis work aims to evaluate the biomechanical behavior of Chinese customized three-dimensional (3D)−printing total temporomandibular joint (TMJ) prostheses by means of finite element analysis. MethodsA 3D model was established by Mimics 18.0, then output in a stereolithography (STL) format. Two models were established to investigate the strain behaviors of an intact mandible and a one-side implanted mandible respectively. Hypermesh and LS-DYNA software were used to establish computer-aided engineering finite element models. The stress distribution on the custom-made total TMJ prosthesis and the strain distribution on the mandible were analyzed by loading maximal masticatory force. ResultsThe maximum stress on the surface of the ultra-high−molecular weight polyethylene was 19.61 MPa. With respect to the mandibular component, the maximum stress in the mandibular component was located at the anterior and posterior surface of the condylar neck, reaching 170.01 MPa. The peak von Mises stress was observed on the topside screw of the mandible, which was found to be 236.08 MPa. For the intact model, it was observed that the strain distribution was basically symmetrical. For the model with the prosthesis, the curve of strain distribution was fundamentally consistent with that in the intact mandible, except for the last 24 mm along the control line. A prominent strain decrease between 41.4% and 58.3% was observed in this area. ConclusionsChinese customized 3D-printed total TMJ prostheses exhibit uniform stress distribution without changing the behavior of the opposite side natural joint. Furthermore, the prostheses have a great potential to be improved in design and materials with a promising future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.