Abstract

BackgroundCurrent there are different screws fixation methods used for fixation of the talar neck fracture. However, the best method of screws internal fixation is still controversial. Few relevant studies have focused on this issue, especially by finite element analysis. The purpose of this study was to explore the mechanical stability of dual screws internal fixation methods with different approaches and the best biomechanical environment of the fracture section, so as to provide reliable mechanical evidence for the selection of clinical internal fixation.MethodsThe computed tomography (CT) image of the healthy adult male ankle joint was used for three-dimensional reconstruction of the ankle model. Talus neck fracture and screws were constructed by computer-aided design (CAD). Then, 3D model of talar neck fracture which fixed with antero-posterior (AP) parallel dual screws, antero-posterior (AP) cross dual screws, postero-anterior (PA) parallel dual screws, and postero-anterior (PA) cross dual screws were simulated. Finally, under the condition of 2400N vertical load, finite element analysis (FEA) were carried out to compare the outcome of the four different internal fixation methods. The results of Von Mises stress, displacement of four groups which contain talus fracture fragments and screws internal fixations were analyzed.ResultsCompared with the other three groups, postero-anterior (PA) parallel dual screws had better results in the stress peak, stress distribution, and displacement of talus and internal fixation.ConclusionsTo sum up, the Von Mises stress of fracture section was the smallest, the stress distribution of screws were the most scattered, and the peak value was the smallest in posterior to anterior parallel double screws fixation, which was obviously better than that in the other three groups. When using screws internal fixation, the method of posterior to anterior screws fixation is better than that of anterior to posterior screws fixation, and the peak value and stress distribution of parallel double screws fixation is better than that of cross double screws fixation. Thus, for the talar neck fracture, the use of posterior to anterior parallel double screws fixation is recommended in clinical surgery.

Highlights

  • Talus is fundamental to connect tibiofibula and foot

  • There are many internal fixation methods for talus neck fracture, including Kirschner needle fixation, plate fixation, screw fixation, etc [3], the complications and outcomes after treatment remain challenging for subsequent management

  • Most of the talus neck fractures are caused by deceleration violence with axial impact, accounting for about 45% of all talus fractures

Read more

Summary

Introduction

Talus is fundamental to connect tibiofibula and foot. It has a unique anatomical structure and function. Most surgeons usually place screws from anterior through the dual anteromedial and anterolateral approaches [4]. Another method of fixation involves placing the screw from a posterior to anterior position, which is less used because of the difficulty of placement. Recent evidence suggest that the initial stability of the fracture end is the key factor for the formation of callus, and a reasonable fixation method can provide good stability for the fracture end and better growth conditions for the talus [7]. The purpose of this study was to explore the mechanical stability of dual screws internal fixation methods with different approaches and the best biomechanical environment of the fracture section, so as to provide reliable mechanical evidence for the selection of clinical internal fixation

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call