Abstract

Lumbar spondylolysis involves anatomical defects of the pars interarticularis, which causes instability during motion. The instability can be addressed through instrumentation with posterolateral fusion (PLF). We developed a novel pedicle screw W-type rod fixation system and evaluated its biomechanical effects in comparison with PLF and Dynesys stabilization for lumbar spondylolysis via finite element (FE) analysis. A validated lumbar spine model was built using ANSYS 14.5 software. Five FE models were established simulating the intact L1-L5 lumbar spine (INT), bilateral pars defect (Bipars), bilateral pars defect with PLF (Bipars_PLF), Dynesys stabilization (Bipars_Dyn), and W-type rod fixation (Bipars_Wtyp). The range of motion (ROM) of the affected segment, the disc stress (DS), and the facet contact force (FCF) of the cranial segment were compared. In the Bipars model, ROM increased in extension and rotation. Compared with the INT model, Bipars_PLF and Bipars_Dyn exhibited remarkably lower ROMs for the affected segment and imposed greater DS and FCF in the cranial segment. Bipars_Wtyp preserved more ROM and generated lower stress at the cranial segment than Bipars_PLF or Bipars_Dyn. The injury model indicates that this novel pedicle screw W-type rod for spondylolysis fixation could return ROM, DS, and FCF to levels similar to preinjury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.