Abstract

The comparative study was performed to investigate the biomechanical properties (maximum tangential stiffness, maximum tangential modulus and tensile strength) of expanded mucoperiosteal palatal tissue after rapid expansion regimen correlated with histological findings. Rabbit palatal model was used to correlate the non-operated control group, sham-operated control (subperiosteal tissue dissection) groups and 24- and 48-hour tissue expansion groups. There was no observed damage of tissue collagen network in both tissue expansion groups analyzed immediately after expansion, and biomechanical profile was not significantly different from the profile of control groups. However, rapid tissue expansion activates remodeling of mucoperiosteal tissue structure that revealed significant changes in mechanical properties during the 4-week follow-up. The 24-hour expansion induced transient increase of resilience observed 2 weeks after surgery in comparison to the control groups. As a result of maturation of newly created collagen fibers and mucoperiosteum rebuilding, there were no significant differences between any of the analyzed tensile parameters 4 weeks after the 24-hour expansion. Increased and elongated inflammatory response and connective matrix synthesis observed during healing of 48-hour expanded tissue led to a significant decrease of tensile strength value in comparison to the control groups. Even though 4 weeks after surgery, the resilience of 48-hour expanded tissue was similar to the control groups, tissue healing was not completed and limited scar formation might considerably change the final biomechanical tissue profile. These findings provide new information about tensile properties to rapid mucoperiosteal palatal tissue expansion with the use of osmotic expanders for cleft palate repair by tissue augmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call