Abstract

IntroductionManagement of the subscapularis during shoulder arthroplasty is controversial. The purpose of this study was to compare the biomechanical performance of subscapularis peel (SP) and lesser tuberosity osteotomy (LTO) in a cadaveric model.MethodsThe subscapularis and proximal humerus were dissected from all soft tissues in 21 fresh-frozen human cadaveric shoulders and randomized to undergo SP, LTO, or standard subscapularis tenotomy (ST, control). For SP and LTO, six #5 sutures were passed through eyelets in the implant (on lateral border and through drill holes in bicipital groove [2] and under trunion [4]). Double-row repair was performed using two lateral row transosseous sutures and four medial row sutures through the tendon (SP) or osseotendinous junction (LTO). Biomechanical properties and mode of failure were tested.ResultsThere were no significant differences in elongation amplitude, cyclic elongation, or maximum load to failure between the three groups (P > 0.05). Mean stiffness was significantly higher in LTO (P = 0.009 vs. SP and ST). In the ST group, 7/7 specimens failed at the tendon-suture interface. For SP, 4/7 failed at the tendon-suture interface, one at the suture-bone interface, one fractured around the implant stem, and one at the knots. For LTO, 3/7 failed at the tendon-suture interface, two at the suture-bone interface and two fractured around the implant stem.ConclusionsIn this cadaveric model, subscapularis repair via ST, SP, and LTO techniques was biomechanically equivalent. Additional studies are needed to confirm these findings and determine the influence of biologic healing on healing rates and clinical outcomes.Level of evidenceN/a, biomechanical laboratory study

Highlights

  • Management of the subscapularis during shoulder arthroplasty is controversial

  • There were no significant differences between the 3 groups with respect to the mean age and sex distribution

  • During pull-to-failure testing, repairs were assessed for (1) maximum load; (2) extension at maximum load; (3) linear stiffness, which was calculated as the steepest slope of the load-displacement curve between initiation of the load-to-fail test; and (4) energy to failure at maximum load

Read more

Summary

Introduction

Management of the subscapularis during shoulder arthroplasty is controversial. The purpose of this study was to compare the biomechanical performance of subscapularis peel (SP) and lesser tuberosity osteotomy (LTO) in a cadaveric model. The standard deltopectoral approach for total shoulder arthroplasty (TSA) requires compromise of the subscapularis tendon for insertion of prosthetic components, necessitating repair of the tendon at the conclusion of the procedure Postoperative dysfunction of this repair is an increasingly recognized postoperative complication [2, 5, 7, 14] and complete rupture can result in significantly worsens clinical outcomes [14, 16]. In the lesser tuberosity osteotomy repair technique, the opportunity for exclusive bone-to-bone fixation has been shown to heal reliably in the clinical setting [6, 7, 11] and may offer greater pull-out strength In another biomechanical study Van Thiel and colleagues [25] evaluated three different methods of subscapularis repair following TSA. The authors found no significant differences in elongation amplitude, cyclic elongation, or ultimate load to failure among the groups, and concluded that biomechanically, all constructs offered similar outcomes

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.