Abstract

The purpose of this study was to evaluate the time zero cyclic and failure loading properties of a linked single-row rotator cuff repair compared with a standard simple suture single-row repair using triple-loaded suture anchors. Eighteen human cadaveric shoulders from 9 matched pairs were dissected, and full-thickness supraspinatus tears were created. The tendon cross-sectional area was recorded. In each pair, one side was repaired with a linked single-row construct and the other with a simple suture single-row construct, both using 2 triple-loaded suture anchors. After preloading, specimens were cycled to 1MPa of effective stress at 1Hz for 500 cycles, and gap formation was recorded with a digital video system. Samples were then loaded to failure, and modes of failure were recorded. There was no statistical difference in peak gap formation between the control and linked constructs (3.6 ± 0.9mm and 3.6 ± 1.2mm, respectively; P= .697). Both constructs averaged below a 5-mm cyclic failure threshold. There was no statistical difference in ultimate load to failure between the control and linked repair (511.1 ± 139.0N and 561.2 ± 131.8N, respectively; P=.164), and both groups reached failure at loads similar to previous studies. Constructs failed predominantly via tissue tearing parallel to the medial suture line. The linked repair performed similarly to the simple single-row repair. Both constructs demonstrated high ultimate load to failure and good resistance to gap formation with cyclic loading, validating the time zero strength of both constructs in a human cadaveric model. The linked repair provided equivalent resistance to gap formation and failure loads compared with simple suture single-row repairs with triple-loaded suture anchors. This suggests that the linked repair is a simplified rip-stop configuration using the existing suture that may perform similarly to current rotator cuff repair techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.