Abstract

Debate exists on the optimum fixation construct for large avulsion fractures of the fifth metatarsal base. We compared the biomechanical strength of 2 headless compression screws vs a hook plate for fixation of these fractures. Large avulsion fractures were simulated on 10 matched pairs of fresh-frozen cadaveric specimens. Specimens were assigned to receive two 2.5-mm headless compression screws or an anatomic fifth metatarsal hook plate, then cyclically loaded through the plantar fascia and metatarsal base. Specimens underwent 100 cycles at 50%, 75%, and 100% physiological load for a total of 300 cycles. The hook plate group demonstrated a significantly higher number of cycles to failure compared with the screw group (270.7 ± 66.0 [range 100-300] cycles vs 178.6 ± 95.7 [range 24-300] cycles, respectively; P = .039). Seven of 10 hook plate specimens remained intact at the maximum 300 cycles compared with 2 of 10 screw specimens. Nine of 10 plate specimens survived at least 1 cycle at 100% physiologic load compared with 5 of 10 screw specimens. A hook plate construct was biomechanically superior to a headless compression screw construct for fixation of large avulsion fractures of the fifth metatarsal base. Whether using hook plates or headless compression screws, surgeons should consider protecting patient weight-bearing after fixation of fifth metatarsal base large avulsion fracture until bony union has occurred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call