Abstract

This study compared four miniscrew types for skeletal anchorage (Aarhus, FAMI, Dual Top and Spider) regarding their biomechanical properties contributing to primary stability. Insertion torque measurements and pull-out tests in axial (0°) as well as in the 20° and 40° direction were performed. Stiffness of the screw–bone construct was calculated from the load–displacement curve. Conic FAMI and Dual Top screws had higher insertion torques. Insertion torques were raised by drill-free insertion of FAMI and Dual Top screws. Statistically significant differences were found between the 4 screw types in pull-out tests. The highly significant differences between the four screws for peak load in the axial (0°) and 20° direction were not apparent in 40° angular loads. For the conical screws, peak load values increased in angular compared with axial load. The Dual Top screw achieved the highest values for peak load and stiffness. 12 Dual Top and 1 Spider screw heads fractured in the pull-out tests. A conical drill-free screw design achieves higher primary stability compared with cylindrical self-tapping screws. This effect was more obvious in insertion torque estimations rather than in pull-out tests. The Dual Top screws, although biomechanically superior to other screw types, were most prone to fractures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.