Abstract

Massive irreparable rotator cuff tears are a difficult problem. Modalities such as irrigation and debridement, partial repair, tendon transfer and grafts have been utilized with high failure rates and mixed results. Synthetic interpositional patch repairs are a novel and increasingly used approach. The present study aimed to examine the biomechanical properties of common synthetic materials for interpositional repairs in contrast to native tendon. Six ovine tendons, six polytetrafluoroethylene (PTFE) felt sections and six expanded PTFE (ePTFE) patch sections were pulled-to-failure to analyze their biomechanical and material properties. Six direct tendon-to-bone surgical method repairs, six interpositional PTFE felt patch repairs and six interpositional ePTFE patch repairs were also constructed in ovine shoulders and pulled-to-failure to examine the biomechanical properties of each repair construct. Ovine tendon had higher load-to-failure (591 N) and had greater stiffness (108 N/mm) than either PTFE felt (296 N, 28 N/mm) or ePTFE patch sections (323 N, 34 N/mm). Both PTFE felt and ePTFE repair techniques required greater load-to-failure (225 N and 177 N, respectively) than direct tendon-to-bone surgical repairs (147 N) in ovine models. Synthetic materials lacked several biomechanical properties, including strength and stiffness, compared to ovine tendon. Interpositional surgical repair models with these materials were significantly stronger than direct tendon-to-bone model repairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.