Abstract

BackgroundNumerous biomechanical and clinical studies comparing different techniques for rotator cuff repair have been reported, yet universal consensus regarding the superior technique has not achieved. A medially-based single-row with triple-loaded suture anchor (also referred to as the Southern California Orthopedic Institute [SCOI] row) and a suture-bridge double-row (SB-DR) with Push-Locks have been shown to result in comparable improvement in treating rotator cuff tear, yet the biomechanical difference is unknown. The purpose of the current study was to determine whether a SCOI row repair had comparable initial biomechanical properties to a SB-DR repair.MethodsSix matched pairs of fresh-frozen cadaveric shoulders with full-thickness supraspinatus tendon tears we created were included. Two different repairs were performed for each pair (SCOI row and SB-DR methods). Specimens were mounted on a material testing machine to undergo cyclic loading, which was cycled from 10 to 100 N at 1 Hz for 500 cycles. Construct gap formation was recorded at an interval of 50 cycles. Samples were then loaded to failure and modes of failure were recorded. Repeated-measures analysis of variance and pair-t test were used for statistical analyses.ResultsThe construct gap formation did not differ between SCOI row and SB-DR repairs (P = 0.056). The last gap displacement was 1.93 ± 0.37 mm for SCOI row repair, and 1.49 ± 0.55 mm for SB-DR repair. The tensile load for 5 mm of elongation and ultimate failure were higher for SCOI row repair compared to SB-DR repair (P = 0.011 and 0.028, respectively). The ultimate failure load was 326.34 ± 11.52 N in the SCOI row group, and 299.82 ± 27.27 N in the SB-DR group. Rotator cuff repair with the SCOI row method failed primarily at the suture- tendon interface, whereas pullout of the lateral row anchors was the primary mechanism of failure for repair with the SB-DR method.ConclusionRotator cuff repair with the SCOI row method has superior biomechanical properties when compared with the SB-DR method. Therefore, SCOI row repair using a medially-based single-row technique with triple-loaded suture anchor is recommended to improve the initial strength in treating full-thickness rotator cuff tears.

Highlights

  • Numerous biomechanical and clinical studies comparing different techniques for rotator cuff repair have been reported, yet universal consensus regarding the superior technique has not achieved

  • The tensile load for 5 mm of elongation was significantly higher in Southern California Orthopedic Institute (SCOI) row repair compared with suture-bridge double-row (SB-DR) repair (P = 0.011, effect size = 1.682, power = 0.9995)

  • The ultimate failure load was higher in the SCOI row group compared with the SB

Read more

Summary

Introduction

Numerous biomechanical and clinical studies comparing different techniques for rotator cuff repair have been reported, yet universal consensus regarding the superior technique has not achieved. A medially-based singlerow with triple-loaded suture anchor ( referred to as the Southern California Orthopedic Institute [SCOI] row) and a suture-bridge double-row (SB-DR) with Push-Locks have been shown to result in comparable improvement in treating rotator cuff tear, yet the biomechanical difference is unknown. A double-row (DR) repair is considered with increased load-to-failure, improved contact areas and pressures, and decreased gap formation at the healing enthesis compared with single-row (SR) repair [10, 12, 13]. SB-DR is considered to be a precursor of “transosseous equivalent” repair, theoretically dominating superior biomechanical properties, greater footprint contact area and pressure [7]. It has been suggested that SB-DR exhibits greater biomechanical characteristics than conventional DR, which in turn is greater than SR [12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call