Abstract

BackgroundRecent studies have pointed out that arthroscopy, the commonly-used surgical procedure for meniscal tears, may lead to an elevated risk of knee osteoarthritis (KOA). The biomechanical factors of KOA can be clarified by the biomechanical analysis after arthroscopic partial meniscectomy (APM). This study aimed to elucidate the cartilage stress and meniscus displacement of the tibiofemoral joint under flexion and rotation loads after APM.MethodsA detailed finite element model of the knee bone, cartilage, meniscus, and major ligaments was established by combining computed tomography and magnetic resonance images. Vertical load and front load were applied to simulate different knee buckling angles. At the same time, by simulating flexion of different degrees and internal and external rotations, the stresses on tibiofemoral articular cartilage and meniscus displacement were evaluated.ResultsGenerally, the contact stress on both the femoral tibial articular cartilage and the meniscus increased with the increased flexion degree. Moreover, the maximum stress on the tibial plateau gradually moved backward. The maximum position shift value of the lateral meniscus was larger than that of the medial meniscus.ConclusionOur finite element model provides a realistic three-dimensional model to evaluate the influence of different joint range of motion and rotating tibiofemoral joint stress distribution. The decreased displacement of the medial meniscus may explain the higher pressure on the knee components. These characteristics of the medial tibiofemoral joint indicate the potential biomechanical risk of knee degeneration.

Highlights

  • Arthroscopic partial meniscectomy (APM), a most commonly-performed orthopedic surgery, is often adopted to treat traumatic meniscus tears that usually occur in physically active individuals

  • arthroscopic partial meniscectomy (APM) because patients treated with APM may face an increased risk of developing knee osteoarthritis (KOA)

  • The geometric model was imported into ANSYS 17.0 finite element analysis software to establish the analysis model, and the material property parameters of bone, meniscus, articular cartilage, ligament were imported into the material library for analysis

Read more

Summary

Introduction

Arthroscopic partial meniscectomy (APM), a most commonly-performed orthopedic surgery, is often adopted to treat traumatic meniscus tears that usually occur in physically active individuals. Elucidating the stress characteristics of articular cartilage can reveal the biomechanical nature of KOA. In-depth understanding of stress transfer in the articular cavity after APM may illuminate the biomechanical causes of OA progression [4, 5]. Recent studies have pointed out that arthroscopy, the commonly-used surgical procedure for meniscal tears, may lead to an elevated risk of knee osteoarthritis (KOA). The biomechanical factors of KOA can be clarified by the biomechanical analysis after arthroscopic partial meniscectomy (APM).

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call