Abstract

There is increasing evidence that the ovarian extracellular matrix (ECM) plays a critical role in follicle development. The rigidity of the cortical ECM limits expansion of the follicle and consequently oocyte maturation, maintaining the follicle in its quiescent state. Quiescent primordial, primary, and secondary follicles still exist in primary ovarian insufficiency (POI) patients, and techniques as in vitro activation (IVA) and drug-free IVA have recently been developed aiming to activate these follicles based on the Hippo signaling disruption that is essential in mechanotransduction. In this context, we analyze the effect of drug-free IVA in POI patients, comparing the relationship between possible resumption ovarian function and biomechanical properties of ovarian tissue. Nineteen POI patients according to ESHRE criteria who underwent drug-free IVA by laparoscopy between January 2018 and December 2019 and were followed up for a year after the intervention. A sample of ovarian cortex taken during the intervention was analyzed by atomic force microscopy (AFM) in order to quantitatively measure tissue stiffness (Young's elastic modulus, E) at the micrometer scale. Functional outcomes after drug-free were analyzed. Resumption of ovarian function was observed in 10 patients (52.6%) and two of them became pregnant with live births. There were no differences in clinical characteristics (age and duration of amenorrhea) and basal hormone parameters (FSH and AMH) depending on whether or not there was activation after surgery. However, ovarian cortex stiffness was significantly greater in patients with ovarian activity after drug-free IVA: median E = 5519Pa (2260-11,296) vs 1501 (999-3474); p-value < 0.001. Biomechanical properties of ovarian cortex in POI patients have a great variability, and higher ovarian tissue stiffness entails a more favorable status when drug-free IVA is applied in their treatment. This status is probably related to an ovary with more residual follicles, which would explain a greater possibility of ovarian follicular reactivations after treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call