Abstract
Biomechanical behavior of tooth-implant-supported prostheses (TISPs) with external and internal implants was compared. Two 3-D models of TISP were designed by varying the implant: external (Model EH) and internal hexagons (Model IH). After loading, von Mises stresses were obtained in implants, abutments, and screws. Principal maximum (σmax) and minimum (σmin) stresses were analyzed in periodontal ligament (PL), alveolar bone, and periimplant bone. Model IH showed lower stress peaks in axial loading in the implant and in the screw but higher in abutment. In oblique loading, Model IH had lower stresses in the implant, but higher in the abutment and in the screw. In the σmax analysis for axial and oblique loads, stress peaks in Model IH were lower in PL, alveolar bone, and periimplant bone. In the σmin analysis for axial load, stress peaks in Model IH were lower in PL, but higher in alveolar bone and in periimplant bone. In oblique load, Model IH showed lower stress peaks in PL and alveolar bone, but higher stress peaks in periimplant bone. TISPs with IH implants do present lower risk of biomechanical failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Implant Dentistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.