Abstract

BackgroundIn the long-term success of a dental implant, the reliability and stability of the implant-abutment interface are important. Studies of maximum force of dental implants with different loading values have been used. This study aims to evaluate the influence of the oblique cyclic loading on the maximum force supported in one-piece and two-piece abutments installed on internal tapered implants.FindingsSixty implants and sixty prosthetic abutments were divided into six groups (n = 10): G1 and G2 (two-piece abutments with 16°), G3 and G4 (two-piece abutments with 11.5°), and G5 and G6 (one-piece abutments with 11.5°). A 2-Hz cyclic loading was applied to specimens of G2, G4, and G6, with a number of cycles of 2,400,000. All specimens were inclined by 30° from the vertical axis, and a vertical loading was applied over the tapered connections (ISO 14801). Then, the maximum force was tested by applying a static compression load on the specimens of the 6 groups tested (30°) at a rate of 0.5 mm/s. Statistical analysis was performed using the Shapiro-Wilk (p > 0.05) and Levene (p = 0.789) tests to determine if the data presented homoscedasticity and the Tukey test for multiple comparisons. Tukey test showed that the maximum force supported by G1 and G2 was not affected by the cyclic load, while in G3 and G4 it decreased significantly when subjected to the cyclic load. The G5 and G6 had a significant increase in maximum force supported when subjected to cyclic load.ConclusionsCyclic loading influenced the maximum force supported of G4 and G6 but did not influence G2.

Highlights

  • Several modifications in implant-abutment design have been made since the 1990s

  • Mathematical formulas and finite element (FE) models have shown that more than 86% of the tightening torque and more than 98% of the relaxation torque are balanced by the tapered junction of these systems [5]

  • This study evaluated the influence of the oblique cyclic loads on the result of the static loading test in one-piece and two-piece abutments installed on internal tapered implants

Read more

Summary

Introduction

The screws material and the coefficient of friction between the coupled surfaces were made to reduce the complications of the connection [1]. In the internal tapered implant-abutment joints, the fixation and stability are conferred by the frictional resistance resulting from the contact between the tapered. Moura et al International Journal of Implant Dentistry (2020) 6:41 parts of the tapered abutment and implant coupling, not being a function of the screw. The application of axial compressive forces causes the increasing of the frictional resistance resulting from the contact of the tapered coupling parts [5]. Studies of maximum force of dental implants with different loading values have been used. This study aims to evaluate the influence of the oblique cyclic loading on the maximum force supported in one-piece and two-piece abutments installed on internal tapered implants

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.