Abstract

Neural tube closure is a complex process driven by mechanical forces, but this process can be disturbed leading to development defects. So, to understand the interplay between forces and tissue stiffness during neurulation, we developed a multimodal Brillouin microscopy and optical coherence system (OCT). OCT provides structural guidance while mapping the biomechanical properties of embryonic neural tube using Brillouin microscopy. 3D-OCT, 2D-OCT, and 2D-Brillouin images of Mthfd1l and Fuz knockout mouse embryos at gestation days 9.5 and 10.5 were acquired. Our results show overall decrease in the stiffness of homozygotic knockout neural tube tissues compared to the wildtype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.