Abstract
The high failure rate of rotator cuff repair surgeries is positively correlated with age, yet the biomechanical changes to the tendons of the rotator cuff with age have not been described. As such, we sought to benchmark and characterize the biomechanical and histopathological properties with the accompanying gene expression of human rotator cuff tendons as a function of age and histopathological degeneration. All four rotator cuff tendons from fresh human cadaver shoulders underwent biomechanical, histopathological, and gene expression analyses. Following cadaver availability, samples were grouped into Younger (i.e., less than 36 years of age, n = 2 donors) and Aged (i.e., greater than 55 years of age, n = 3 donors) as a means of characterizing and quantifying the age-related changes exhibited by the tendons. Biomechanical testing and subsequent computational modeling techniques revealed both differences in properties between tendons and greater Young's moduli in the Younger tendons (supraspinatus 3.06x, infraspinatus 1.76x, subscapularis 1.25x, and teres minor 1.32x). Histopathological scoring using the semi-quantitative Bonar scoring scheme revealed a positive correlation with age across all tendons (r = 0.508, p < 0.001). These data contextualize the biomechanical and histopathological changes to tendons that occurs naturally with aging, highlighting the innate differences in biomechanical properties of all four rotator cuff tendons, as well as the difference in their degenerative trajectories. Additionally, the histopathological scoring revealed moderate signs of degeneration within the Younger supraspinatus tendons, suggesting tissue quality may decrease in this specific tendon in patients less than 40 years old, before clinical symptoms or tears.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of orthopaedic research : official publication of the Orthopaedic Research Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.