Abstract
A biomechanical finite element modeling study of the human lumbar spine. To evaluate the effects of a transforaminal interbody device's footprint on lumbar spine biomechanics to further examine the potential subtle biomechanical differences not captured in previous studies. In recent years, the evolution of interbody fusion devices has provided the surgeons with a multitude of options. An articulating transforaminal lumbar interbody fusion (TLIF) device is developed to overcome the surgical challenges associated with insertion of a large footprint interbody device through a small incision. A finite element model of the L3-S1 lumbar segment was modified to simulate replacement of various TLIF constructs with different cage designs including an articulating vertebral interbody (AVID) TLIF device and a generic TLIF device placed in different configurations. The instrumented models were subjected to a 400 N follower load along with a 10 N m bending moment at different physiological planes. The kinematics, loads, and stresses were compared among various models. Simulated cage designs provided similar kinematical stability within the treated segments. However, the articulating and double TLIF implants allowed for better load sharing through the anterior column. These implants resulted in lower endplate and pedicle screw stresses and in more homogenous stress distribution across the peripheral region of the endplate. An articulating, large footprint, peripherally placed TLIF device affords substantial biomechanical advantages. This device may be able to reduce the incidence of subsidence because of its ability to reduce and distribute the endplate stresses in the stronger peripheral region. It may also reduce the posterior hardware failure incidence owing to its ability to reduce the screw stresses as compared with traditional TLIF. Although double TLIF has been demonstrated to have similar biomechanical advantages as the AVID, complications associated with double TLIF (ie, larger surgical incision, longer surgical procedure, placement and alignment challenges) support AVID as a better optimized alternative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.