Abstract

PurposeThis study aimed to investigate the biomechanical properties, cell migration, and revascularization of the acellular dermal matrix Epiflex. As a decellularized, freeze–dried human skin graft, Epiflex has broad applications in medical fields, particularly in implantology and dentistry. Understanding its biomechanical characteristics is crucial for its clinical adoption as a novel soft tissue graft option.MethodsEpiflex (n = 3) was evaluated in comparison to palatal tissue from body donors (n = 3). Key metrics, such as elongation and tear resistance, were quantified. Both graft types underwent histological analysis and scanning electron microscopy. Additionally, the healing properties of Epiflex were assessed using a Chorioallantoic Membrane (CAM) Assay.ResultsBiomechanically, Epiflex (mean = 116.01 N) demonstrated the ability to withstand greater forces (p = 0.013) than human palatal tissue (mean = 12.58 N). When comparing the elongation, no significant difference was measured (ASG mean = 9.93 mm, EF mean = 9.7 mm). Histologically, Epiflex exhibited a loosely connected network of collagen fibers with a dense upper layer. The CAM Assay indicated efficient revascularization.ConclusionEpiflex appears to be a viable option for soft tissue augmentation, particularly appealing to patient groups who avoid all or specific animal-derived products due to ethical or religious reasons.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.