Abstract

BackgroundMany clinical studies have reported the high success rate of the All-on-4 concept. In the present study, we aimed to compare the stress distribution with different tilted distal implants and cantilever lengths in an All-on-4 system using the two-dimensional photoelastic method and to establish the All-on-4 implant photoelastic model by computer-aided design (CAD) and rapid prototyping (RP). MethodsThe data of the human edentulous mandible were acquired by computed tomography (CT). Three human edentulous mandible All-on-4 implant models with different distally inclined implant holes were fabricated using Mimic, Geomagic Studio software, and a light solidifying fast shaping machine. Then the final photoelastic models were established through the traditional method. Each of the three models had four NobelSpeedy Replace implants between the interforaminal regions. The two posterior implants were placed 0, 15, and 45 degrees distally before the mental foramen. The four implants were splinted by wrought cobalt-chromium alloy frameworks. Each of the three photoelastic models was submitted to a 150 N vertical load at five points on the framework: the central fossa of the mandibular first molar, and 0 mm, 5 mm, 10 mm, and 15 mm of the cantilever length. The stress produced in the models was photographed with a digital camera, and the highest value of the stressed fringe pattern was recorded.ResultsThe All-on-4 implant photoelastic model established by CAD and RP was highly controllable and easy to modify. The position and inclination of implants were accurate, and the frameworks could be passively emplaced. The stress values were higher around a single tilted implant compared with the distal implant in All-on-4 with the same inclination. The 0-degree distal implant and 45-degree distal implant demonstrated the highest and lowest stress when loading at the central fossa of the mandibular first molar, respectively. With the same inclination of distal implant, the peri-implant bone stress increased as the length of cantilever increased.ConclusionThe method of establishing the All-on-4 implant photoelastic model by CAD and RP was highly controllable, convenient, fast, and accurate. The tilted implants splinted in the fully fixed prosthesis with reduced cantilever lengths did not increase the stress level compared with the vertical distal implants.And this illustrated that the influence of cantilever on stress distribution was greater than the influence of implant inlination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.