Abstract

Single-incision biceps tendon repair with an arthrotunneling device has previously been shown to be a safe and effective technique that provides the anatomic restoration of a two-incision approach and a reduced complication profile. This repair provides adequate and comparable fixation to repairs utilizing anchors, buttons, screws, etc., at a lower cost. This study utilized 10 cadaveric specimens. Native and repair specimens were cyclically loaded and graft displacement, flexion/extension (FE) and pronation/supination (PS) moment arms at 12.5° to 152.5° (in 5° increments) before and after repair, and maximum load to failure were measured. The FE and PS moment arms and overall maximum moment arms were both significantly larger in the repaired case than in the native case (p < 0.01). Moment arms for supinated specimens were significantly greater than neutral specimens, which in turn was greater than pronated specimens (p < 0.01). The maximum load up to 10 mm of repair displacement was 214.5.0 ± 66.6 N and the repair displacement due to 1000 cycles of 50 N was 2.56 ± 2.06 mm. The single-incision arthrotunneling technique is a safe and effective repair that recreates the anatomic footprint and biomechanics of the native biceps and has a reduced complication profile compared to a two-incision approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call