Abstract

In vehicle side collisions, traumatic brain injury caused by the impact between occupant’s head and the interior parts of A or B pillar is a major reason of death and disability. In order to analyze the biomechanical response and injury mechanism of occupant’s brain in side collisions, a refined finite element head model representing the 50th percentile Chinese male was developed. Its improvements of biofidelity comparing to the original head model were illustrated through model simulation against the same post mortem human subjects test. Based on the refined head model, the brain biomechanical responses and injuries in the side impact with interior parts of A pillar and B pillar were analyzed according to FMVSS 201U, and the influences of different impact locations and directions were investigated. The results showed that the brain tissues on impact side sustained positive pressure and those on the opposite side experienced negative pressure. The transmission of pressure wave was easy to cause brain concussion and other diffuse brain injuries. The intracranial pressure distribution exhibited a typical pattern of contrecoup injury. The extreme stress concentration in the junction area of the cerebrum, cerebellum and brain stem could lead to focal injury such as brain contusion and laceration. Moreover, the impact injury of A pillar was more serious than that of B pillar, which was consistent with the traffic injury statistics that the head injury in oblique side collisions was more serious than that of vertical side collisions. Therefore, the interior parts of A pillar should be designed to absorb more energy than those of B pillar under the same conditions. In addition, the severity of brain injury is more sensitive to the variation of the horizontal angle than that of the vertical angle. Both the peak values of the occipital fossa pressure in effect simulations of the horizontal and vertical angles were three to four times of the peak values of the forehead pressure. When the impact horizontal angle was up to 255[Formula: see text], or the vertical angle was up to 45[Formula: see text], the head HIC(d) values would be up to 1320.45 and 1101.06, respectively, which indicated a AIS 3[Formula: see text] injury risk of the head.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.