Abstract

PurposeThe purpose of this study was to investigate the biomechanical behavior of immediately loaded implants in an edentulous mandible according to the “All-on-Four” concept. MethodsA 3D-finite element model of an edentulous mandible was constructed. Four implants were placed between the bilateral mental foramen according to “All-on-Four” concept. A framework made of titanium or acrylic resin between the bilateral first molars was modeled. Immediate loading and a delayed loading protocol were simulated. A vertical load of 200N was applied at the cantilever or on the abutments region of the distal implants, simulating the absence of a cantilever. ResultsThe peak principal compressive strains in the immediate loading models resulted in 24.0–35.8% and 26.4–39.0% increases compared with the delayed loading models under non-cantilever loading and cantilever loading, respectively. The loading position greatly affected the principal compressive and tensile strain values. The peak principal compressive strains in non-cantilever loading resulted in a 45.3–52.6% reduction compared with those in cantilever loading. The framework material did not influence the peak compressive and tensile strain. The maximum micromotion at the bone–implant interface in the immediate loading models was 7.5–14.4μm. ConclusionsMandibular fixed full-arch prostheses without cantilevers may result in a favorable reduction of the peri-implant bone strain during the healing period, compared with cantilevers. The maximum micromotion was within the acceptable limits for uneventful implant osseointegration in the immediate loading models. Framework material did not play an important role in reducing the peri-implant bone strain and micromotion at the bone–implant interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.