Abstract

BackgroundFree vascularized fibula graft (FVFG) techniques have most consistently demonstrated beneficial effects in young patients diagnosed with nontraumatic osteonecrosis of the femoral head (NONFH), and the core track technique (CTT) in particular is the most commonly used technique. As an alternative to CTT, the modified light bulb technique (LBT) has been reported to have a higher success rate. However, its biomechanical outcomes are poorly understood. This study aimed to compare the biomechanical properties of modified LBT with those of CTT in treating NONFH.MethodsTwo types (C1 and C2) of NONFH finite element models were established on the basis of a healthy subject and the Japanese Investigation Committee (JIC) classification system, and the CTT and LBT procedures were simulated in each type of model. The average von Mises stresses and stiffness of the proximal femur were calculated by applying a load of 250% of the body weight on the femoral head to simulate walking conditions. In addition, two patient-specific models were built and simulated under the same boundary conditions to further validate the LBT.ResultsIn the healthy subject-derived models, both the LBT and CTT resulted in reduced stresses in the weight-bearing area, central femoral head, femoral neck, and trochanteric and subtrochanteric regions and increased structural stiffness after surgery. In the weight-bearing area, the CTT reduced the stress more than the LBT did (36.19% vs 31.45%) for type C1 NONFH and less than the LBT did (23.63% vs 26.76%) for type C2 NONFH. In the patient-specific models, the stiffness and stresses also increased and decreased, respectively, from before to after surgery, which is consistent with the results of healthy subject-derived models.ConclusionThe biomechanical effects of the LBT and CTT differ by the JIC type of NONFH. In terms of preventing the collapse of the femoral head, the LBT may be more effective for JIC type C2 NONFH and may be a suitable alternative to the CTT, while for JIC type C1 NONFH, the CTT is still a better choice. Both techniques can improve the biomechanical properties of NONFH by reducing the proximal femoral stress and increasing the structural stiffness.

Highlights

  • Free vascularized fibula graft (FVFG) techniques have most consistently demonstrated beneficial effects in young patients diagnosed with nontraumatic osteonecrosis of the femoral head (NONFH), and the core track technique (CTT) in particular is the most commonly used technique

  • The biomechanical effects of the light bulb technique (LBT) and CTT differ by the Japanese Investigation Committee (JIC) type of Nontraumatic osteonecrosis of femoral head (NONFH)

  • In terms of preventing the collapse of the femoral head, the LBT may be more effective for JIC type C2 NONFH and may be a suitable alternative to the CTT, while for JIC type C1 NONFH, the CTT is still a better choice

Read more

Summary

Introduction

Free vascularized fibula graft (FVFG) techniques have most consistently demonstrated beneficial effects in young patients diagnosed with nontraumatic osteonecrosis of the femoral head (NONFH), and the core track technique (CTT) in particular is the most commonly used technique. The CTT is the most commonly used technique for treating NONFH, which is fulfilled by drilling a core tunnel from the lateral aspect of the greater trochanter, removing the necrotic bone tissue and implanting the bone. This technique requires a large amount of healthy bone to be reamed, longer fibula graft to be harvested, and a longer fibular pedicle, and the operation duration is long. To the best of our knowledge, no quantitative study exists regarding the biomechanical benefits of the LBT, whose biomechanical outcomes have been poorly understood

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call