Abstract

A rotationally unstable pelvic fracture can lead to loss of function and limit moving ability. Immediate fracture fixation is needed for patients with the pelvic fractures. However, it may be difficult to evaluate different surgical strategies for the fracture treatments due to variations in patients’ anatomies and surgical techniques. Thus, the purpose of the present study was to analyze the biomechanical performances of the intact, injured, and treated pelvises based on different physiological movements of the spine using finite element method. Three-dimensional musculoskeletal finite element models of the spine-pelvis-femur complex were developed. The intact pelvis, the rotationally unstable pelvis, and six types of pelvic fixation techniques were analyzed. Additionally, seven types of physiological movements of the spine were also considered. The results showed that the posterior iliosacral screws combined with lower and anterior plate (PIS-LAP) had good fixation stability, lower plate stress, and lower pelvic stress. However, the PIS-LAP increased the stress of the posterior iliosacral screws. The right lateral bending, left lateral bending, and flexion significantly affect all the biomechanical performances compared to the other physiological movements of the spine. The present study can provide engineers and surgeons with the understanding of the biomechanics of various fixation techniques during different physiological movements for the treatment of rotationally unstable pelvic fractures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call