Abstract

The thoracic aorta is a site of multiple pathological processes, such as aneurysms and dissections. When considering the development of endovascular devices, this vessel has been extensively manipulated because of aortic diseases, as well as to serve as a route for procedures involving the head and neck vessels. Therefore, the aim of the present study was to obtain biomechanical experimental information about the strength and deformability of this vessel. Thirty-one thoracic aorta specimens were harvested during the autopsy procedure. They were carefully dissected and transversally sectioned according to Criado's aortic arch map landing zones (0 to 4). The supra-aortic trunks were removed, and the aortic rings were opened in their convexity, which resulted in flat tissue segments. Four millimeter-wide strips were prepared from each zone after which they were attached to a clip system connected to the INSTRON SPEC 2200 device, which was responsible for pulling the fragment up to its rupture during the uniaxial tension test. The INSPEC software was used to coordinate the test, and data management was conducted via the SERIES IX software. The biomechanical variables that were measured included failure stress, failure tension, and failure strain. When comparing the five segments from all 31 aortas, three different strength levels were observed. Zones 0 and 1 exhibited the highest failure stress and failure tension values, followed by Zones 2 and 4. Zone 3 (aortic isthmus) was the weakest segment that was tested when compared to the stress and tension of Zones 0 and 1 (P < 0.001), the stress and tension of Zone 2 (P=0.005 and P=0.002, respectively) and the stress and tension of Zone 4 (P=0.023 and P=0.006, respectively). Among donors > 65 years-old, women presented significantly weaker descending aortas than men in regards to stress (P=0.049) and tension (P=0.014). Among male donors, the elderly donors presented significantly stiffer aortic walls and weaker ascending (P=0.029 for stress) and descending (P=0.004 for stress; P=0.031 for tension) aortas than younger men. Uniaxial tensile strength tests revealed that the thoracic aorta is a very heterogeneous vessel. Isthmus frailty may add to the understanding of the pathophysiology of some aortic diseases that commonly compromise this region. The lower strength that was verifiedin some aortic segments from elderly donors may contribute to the genesis of some thoracic aorta diseases among that group of donors. These data can contribute to the development of new endovascular devices that are specifically designed for this vessel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.