Abstract
Background Failure to address both components of a combined posterior cruciate ligament and posterolateral corner injury has been implicated as a reason for abnormal biomechanics and inferior clinical results. Hypothesis Combined double-bundle posterior cruciate ligament and posterolateral corner reconstruction restores the kinematics and in situ forces of the intact knee ligaments. Study Design Controlled laboratory study Methods Ten fresh-frozen human cadaveric knees were tested using a robotic testing system through sequential cutting and reconstructing of the posterior cruciate ligament and posterolateral corner. The knees were subjected to a 134-N posterior tibial load and a 5-N.m external tibial torque at multiple flexion angles. The double-bundle posterior cruciate ligament reconstruction was performed using Achilles and semitendinosus tendons. The posterolateral corner reconstruction consisted of reattaching the popliteus tendon to its femoral origin and reconstructing the popliteofibular ligament with a gracilis tendon. Results Under the posterior load, the combined reconstruction reduced posterior translation to within 1.2 - 1.5 mm of the intact knee. The in situ forces in the posterior cruciate ligament grafts were significantly less than those in the native posterior cruciate ligament at all angles except full extension. Conversely, the forces in the posterolateral corner grafts were significantly higher than those in the native structures at all angles. Under the external torque with the combined reconstruction, external rotation as well as in situ forces in the posterior cruciate ligament and posterolateral corner grafts were not different from the intact knee. Conclusions A combined posterior cruciate ligament and posterolateral corner reconstruction can restore intact knee kinematics at time zero. In situ forces in the intact posterior cruciate ligament and posterolateral corner were not reproduced by the reconstruction; however, the posterolateral corner reconstruction reduced the loads experienced by the posterior cruciate ligament grafts. Clinical Relevance By addressing both structures of this combined injury, this technique restores native kinematics under the applied loads at fixed flexion angles and demonstrates load sharing among the grafts creating a potentially protective effect against early failure of the posterior cruciate ligament grafts but with increased force in the posterolateral corner construct.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.