Abstract

Cardiac muscle is the hardest working muscle in the body, pumping approximately 70g of blood with every heartbeat, circulating 9500l of blood daily and contracting over 3billion times during the average human's life. Heart failure - a heterogeneous syndrome - is a major and increasing health care problem worldwide and a leading cause of hospitalization and morbidity in elderly. Adequate heart tissue regeneration in human is lacking. Challenges to engineer heart tissue and employ it in vitro or in regenerative medicine remain to be solved. First of all, cardiac tissue bioengineering requires robust and powerful cells capable of differentiating into cardiomyogenic lineages in combination with effective, safe and highly specialized biomaterials, hydrogels and/or scaffolds for recreating the native extracellular microenvironment. Advances in stem cell and biomaterial science already provided an increasing array of cell resources, their cultivation technologies and biomatrices for efficient and safe cardiac tissue reconstruction. In order to develop new cardiac tissue mimicking technologies in vitro, it is necessary to analyze the advantages and drawbacks of already established biosystems. Therefore, in this paper, we provide a comprehensive overview of recently employed cells, 2D and 3D biomatrices for cardiac tissue engineering and review the current state-of-the-art in this field as well as future directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call