Abstract

ABSTRACT Limitations with the conventional methods have bought biomaterials to the forefront for the repair and restoration of tissue functions. Recent advances in the area of biomaterials have revolutionized the field of tissue engineering and regenerative medicine. According to the nature of polymers they are divided into different classes and each one has found applicability in the area of regenerative medicine. Each class of biomaterials has a set of properties which makes them appropriate for a specific application. The most important property is the behavior of biomaterials when implanted in vivo. It should not elicit any immune rejection reactions neither should its byproducts be toxic to animal tissue. Any type of the biomaterial can be fabricated into a three-dimensional scaffold which can be used as housing for the initial growth and proliferation of the specific cell type. In addition to the conventional methods of scaffold fabrication few contemporary methods include ‘hydrogels’ and ‘cryogels’. These matrices possess interconnected porous network which facilitates the cell migration and proliferation. These gel matrices can be fabricated from both natural and synthetic polymers and have shown applicability in different areas of tissue engineering. Biomaterials have shown applicability as cardiovascular implants, orthopedic implants, dental implants, etc. Furthermore, recent advances in the regenerative medicine have shown that in addition to the use of autologous and allogenic sources, stem cells can prove to be a very good alternative. Stem cells interaction with biomaterials has shown applicability in the regenerative medicine and thus can have an immense potential in future. How to cite this article Bhat S, Kumar A. Biomaterials in Regenerative Medicine. J Postgrad Med Edu Res 2012;46(2):81-89.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.