Abstract

Chitosan (CS) is an attractive bio-adsorbent in pollutant removal due to its environment-friendly properties and abundant adsorption sites. However, the weak mechanical properties and strong dissolubility in acidic conditions of CS hinder its wide application. Herein, a facile method was proposed to fabricate polydopamine (PDA) and CS cross-linked graphene oxide (GO) (GO/CS/PDA) composite aerogel for Cr (VI) removal. GO was cross-linked with CS, forming a reinforced and three-dimensional macroporous structure; the introduced PDA was simultaneously cross-linked with CS and GO, providing more abundant nanopores and active sites for Cr(VI) removal. Based on the batch experiment results, GO/CS/PDA exhibited an optimized mass ratio (1:20:2) of GO, CS, and PDA for the most effective Cr(VI) adsorption; the adsorption removal rate of Cr(VI) was pH dependent, with the highest removal rate at pH = 3.0. The pseudo-second-order kinetic and Freundlich models were more suitable for fitting the adsorption kinetics and adsorption isotherms, respectively, and the maximum adsorption capacity for GO/CS/PDA was 312.05 mg/g at 298 K. Thermodynamics parameters indicated that the adsorption was a spontaneous and exothermic process. The excellent mechanical integrity and reusable adsorption performance of GO/CS/PDA promise the adsorbent with satisfactory reusability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call