Abstract

A critical problem with the use of biomaterial implants is associated with bacterial adhesion on the surface of implants and in turn the biofilm formation. Among different strategies that have been reported to resolve this dilemma, surface design combined with both antiadhesive and antimicrobial properties has proven to be highly effective. Physiochemical properties of polymer brush coatings possess non-adhesive capability against bacterial adhesion and create a niche for further functionalization. The current study aims to evaluate the effect of antibiotics incorporated into the polymer brush on bacterial adhesion and biofilm formation. Brushes made of zwitterionic polymers were synthesized, functionalized with vancomycin via both physical and chemical conjugation, and grafted onto the silicon rubber surfaces. Antibacterial and antiadhesive measurements of designed coated biomaterials were mediated through the use of a parallel plate flow chamber against biofilm growth developed by Staphylococcus aureus and Escherichia coli over a period of 24 h. The analysis of biofilm growth on designed coated biomaterials showed that the pristine coated zwitterionic brushes are significantly resistant to bacterial adhesion and biofilm formation but not in the polymer brush coating incorporated with antibiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call