Abstract

ABSTRACTIntroduction: The feasibility and safety of bone marrow cell (BMC) therapy for cardiac repair following myocardial infarction has been demonstrated in clinical studies, albeit with relatively modest structural and functional benefits. In response to the shortcomings of BMC therapy, the use of biomaterials to enhance cell transplantation is being investigated.Areas covered: The authors first review what has been learned from BMC therapies for the treatment of myocardial infarction in animal models and in clinical trials. Some issues that may be limiting the efficacy of BMC therapy are then described. Lastly, they summarize several biomaterial approaches that have been reported to improve transplanted cell retention and functional outcome, and then focus on how a material can enhance cell function such as proliferation, viability, endothelial differentiation and angiogenic potential.Expert opinion: Improvements are needed if BMC therapy is to become a viable treatment in the clinic. There is optimism that a biomaterial strategy will lead to superior results compared to the cell therapy alone. Through the identification of underlying cell-biomaterial mechanisms, the establishment of comparative standards, and an awareness of the lessons learned from cell therapy trials, biomaterial-enhanced BMC therapy may become an option for the treatment of heart disease patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.