Abstract

Although perennial grasses show considerable potential as candidates for lignocellulosic bioenergy production, these crops exhibit considerable variation in regional adaptability and yield. Giant miscanthus (Miscanthus × giganteus Greef & Deuter), Miscanthus sinensis Anderss. ‘Gracillimus’ and MH2006, plume grass (Saccharum arundinaceum Retz.), ravenna grass (Saccharum ravennae (L.) L.), switchgrass (Panicum virgatum L. ‘Alamo’), and giant reed (Arundo donax L.) field plots were established in 2008, treated with four nitrogen (N) fertilizer rates (0, 34, 67, 134kgha−1y−1), and harvested annually in winter from 2008 to 2011. Giant reed, ‘Gracillimus’, switchgrass, MH2006, giant miscanthus and ravenna grass at the Mountain site produced mean dry matter yields of 22.8, 21.3, 20.9, 19.3, 18.4, and 10.0 Mgha−1y−1, respectively (averaged over the last two years). Dry matter yields at the Coastal site for giant reed, giant miscanthus, switchgrass, ravenna grass, and ‘Gracillimus’ were 27.4, 20.8, 20.1, 14.3, and 9.4 Mgha−1y−1, respectively (averaged over the last two years). Increasing N rates up to 134 kgNha−1 did not have a consistent significant effect on biomass production. High yields coupled with high mortality for plume grass at both sites indicates its potential as a bioenergy crop and need for continued improvement. Overall, the perennial grasses in this study had low nutrient removal, although giant reed and plume grass often removed significantly more N, P, K and S compared with Miscanthus spp. and switchgrass. Our results indicate that giant reed, giant miscanthus, and switchgrass are productive bioenergy crops across geographic regions of North Carolina.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.