Abstract

Energy sorghum tolerates adverse climatic and edaphic conditions and has great potential as biofuel feedstock in marginal land. This study investigates the potential energy sorghum biomass production and uptake of nitrogen (N), phosphorus (P), and potassium (K) on a sandy loam marginal land in a semi-arid region, in order to define optimum N fertilizer rate to produce the highest biomass yield with minimal nutrient elimination. Five N rate treatments (0, 60, 120, 180, and 240 kg ha−1) and two sorghum varieties (sweet type Guotian-8 (GT-8) and biomass type Guoneng-11 (GN-11)) were used. Yield increment was observed as N level increased, but the standout treatment appeared to be N rate of 60 kg ha−1 which significantly increased biomass yield vs. controls by 68.8% in 2014 and 64.1% in 2015. Biomass yield exhibited non-significant differences between N rate treatments from 60 to 240 kg ha−1, although the highest biomass yield (9.2–11.9 t ha−1) was observed in the 120 kg N ha−1 treatment. Nutrient analysis showed that N, P, and K accumulation in aboveground plants increased with N rate increase, ranging between 32.2 and 119.1, 7.9 and 19.2, and 22.1 and 94.0 kg ha−1, respectively, for the highest N rate of 240 kg ha−1. Substantial amounts of N were extracted from the soil in control and 60 kg N ha−1 treatments, despite the low fertility and organic matter content of the soil. Moreover, nitrogen (N) use efficiency (NUE) was maximized at lower N rates. A decline in physiological N use efficiency (PNUE) resulted in decreased agronomic N use efficiency (ANUE) at higher N rates. Hence, it is concluded that N fertilizer rate between 60 and 120 kg ha−1 would be the optimal N requirement to facilitate sustainable production of energy sorghum on a sandy wasteland.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.