Abstract

Micro(nano)plastics (MNPs) have become a significant environmental concern due to their widespread presence in the biosphere and potential harm to ecosystems and human health. Here, we propose for the first time a MNPs capture, utilization, and storage (PCUS) concept to achieve MNPs remediation from water while meeting economically productive upcycling and environmentally sustainable plastic waste management. A highly efficient capturing material derived from surface-modified woody biomass waste (M-Basswood) is developed to remove a broad spectrum of multidimensional and compositional MNPs from water. The M-Basswood delivered a high and stable capture efficiency of >99.1% at different pH or salinity levels. This exceptional capture performance is driven by multiscale interactions between M-Basswood and MNPs, involving physical trapping, strong electrostatic attractions, and triggered MNPs cluster-like aggregation sedimentation. Additionally, the invivo biodistribution of MNPs shows low ingestion and accumulation of MNPs in the mice organs. After MNPs remediation from water, the M-Basswood, together with captured MNPs, is further processed into a high-performance composite board product where MNPs serve as the glue for utilization and storage. Furthermore, the life cycle assessment (LCA) and techno-economic analysis (TEA) results demonstrate the environmental friendliness and economic viability of our proposed full-chain PCUS strategy, promising to drive positive change in plastic pollution and foster a circular economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call