Abstract

Lipid-storing copepods are fundamental to the functioning of marine ecosystems, transferring energy from primary producers to higher trophic levels and sequestering atmospheric carbon (C) in the deep ocean. Quantifying trophic transfer and biogeochemical cycling by copepods requires improved understanding of copepod metabolic rates in both surface waters and during lipid-fueled metabolism over winter. Here we present new biomass turnover rates of C and nitrogen (N) inCalanoides acutus,Calanoides natalis,Calanus glacialisandCalanus hyperboreusalongside published data forCalanus finmarchicusandCalanus pacificus. Turnover rates in metabolically active animals, normalised to 10°C, ranged between 0.007 – 0.105 d-1and 0.004 – 0.065 d-1for C and N, respectively. Turnover rates of C were typically faster than those for N, supporting the understanding that non-protein C, e.g. lipid, is catabolised faster than protein. Re-analysis of published data indicates that inactive, overwinteringC. finmarchicusturn over wax ester lipids at a rate of 0.0016 d-1. These and other basal rate data will facilitate the mechanistic representation of copepod physiology in global biogeochemical models, thereby reducing uncertainties in our predictions of future ocean ecosystem functioning and C sequestration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call