Abstract

The last Intergovernmental Panel on Climate Change (IPPC) assessment report highlighted how actions to reduce CO2 emissions have not been effective so far to achieve the 1.5 C limit and that radical measures are required. Solutions such as the upgrading of waste biomass, the power-to-X paradigm, and an innovative energy carrier such as hydrogen can make an effective contribution to the transition toward a low-carbon energy system. In this context, the aim of this study is to improve the hydrogen production process from wet residual biomass by examining the advantages of an innovative integration of anaerobic digestion with thermochemical transformation processes. Furthermore, this solution is integrated into a hybrid power supply composed of an electric grid and a photovoltaic plant (PV), supported by a thermal energy storage (TES) system. Both the performance of the plant and its input energy demand—splitting the power request between the photovoltaic system and the national grid—are carefully assessed by a Simulink/Simscape model. The preliminary evaluation shows that the plant has good performance in terms of hydrogen yields, reaching 5.37% kgH2/kgbiomass, which is significantly higher than the typical value of a single process (approximately 3%). This finding demonstrates a good synergy between the biological and thermochemical biomass valorization routes. Moreover, thermal energy storage significantly improves the conversion plant’s independence, almost halving the energy demand from the grid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call