Abstract

Biomass bifunctional polyamide elastomers (BbPEs) were successfully prepared from dimer acid (DA), trimer acid (TA), and triethylenetetramine with shape memory and self-healing abilities. In the composition structure of BbPEs, vast hydrogen bonds formed among the amide bonds of different segments endowed the BbPEs with self-healing ability. At room temperature, the mechanical properties of BbPEs can be restored to 49% of the original condition after healing for 2 h. In addition, the physical and chemical cross-linking endowed the BbPE with preferable mechanical and shape memory properties. The tensile strength of the material is 4.4 ± 0.1 MPa, and the elongation at break reaches 1500 ± 2%. Under the recovery temperature of 60 °C, the shape memory recovery rate of 5 min can reach 95%. The recovery efficiency is 88.9%. This material can be utilized for many practical applications, such as intelligent electronic devices, bionic materials, and so on.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.