Abstract

Sustainable transformation and efficient utilization of biomasses and their derived materials are environmentally as well as economically compliant strategies. Biomass seaweed-derived nitrogen self-doped porous carbon with tailored surface area and pore structures are prepared through carbonization and activation. The influence of carbonization temperature on morphology, surface area, and heteroatom dopants are investigated to optimize sodium-ion storage capability. Seaweed-derived nitrogen self-doped activated carbon (SAC) as anode materials for sodium-ion batteries exhibits remarkable reversible capacity of 303/192 mAh g−1 after 100/500 cycles at current densities of 100/200 mA g−1, respectively, and a good rate capability. The interconnected and porous conducting nature along with the heteroatom dopant role in creating defective sites and charge stabilization are favorable for ion storage and diffusion and electron transport, indicating the electrodes can offer improved electrochemical performances. In addition, post-mortem analysis of the cycled carbon electrodes through ex-situ tools demonstrates the sodium-ion storage mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call