Abstract

Optimizing nitrogen (N) management is an important factor for sustainable perennial biomass systems. However, N application is costly, both financially and environmentally. Our objectives were to determine: (1) N rate and plant spacing effects on yield and yield components of prairie cordgrass swards and (2) fertilizer N replacement value (FNRV) of kura clover in prairie cordgrass-kura clover binary mixtures. Plots were established in Illinois, Minnesota, South Dakota, and Wisconsin, USA, in 2010. Kura clover was transplanted on 30-cm centers in all treatments in which it was a component; prairie cordgrass seedlings were transplanted within the kura clover on 60- and 90-cm centers. Monoculture prairie cordgrass stands were established at the same population densities of mixed stands and fertilized with 0, 75, 150, or 225 kg N ha-1. Biomass was harvested in the autumn from 2011 to 2013. N (urea), year, plant spacing, and year × plant spacing affected prairie cordgrass production at all locations. Prairie cordgrass yield increased with N application, but the response varied by location. N application tended to increase prairie cordgrass tiller density and consistently increased tiller mass. Prairie cordgrass yield with 0 N was equal to or less than the yield of prairie cordgrass/kura clover mixtures at all locations in 2011 and 2012; however, kura clover provided a FNRV of 25–82 kg N ha-1 to prairie cordgrass in 2013. Kura clover has potential to provide N to prairie cordgrass in binary mixtures of these two species and on land that may not be easily farmed due to wetness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call