Abstract

BackgroundIn the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest. Although ligno-cellulosic material is considered as suitable feedstock, the almost inevitable pretreatment of this recalcitrant material may interfere with the subsequent fermentation steps. In this study, the fungus Ustilago maydis was used to produce itaconic acid as platform chemical for the synthesis of potential biofuels such as 3-methyltetrahydrofuran. No studies, however, have investigated how pretreatment of ligno-cellulosic biomass precisely influences the subsequent fermentation by U. maydis. Thus, this current study aims to first characterize U. maydis in shake flasks and then to evaluate the influence of three exemplary pretreatment methods on the cultivation and itaconic acid production of this fungus. Cellulose enzymatically hydrolysed in seawater and salt-assisted organic-acid catalysed cellulose were investigated as substrates. Lastly, hydrolysed hemicellulose from fractionated beech wood was applied as substrate.ResultsU. maydis was characterized on shake flask level regarding its itaconic acid production on glucose. Nitrogen limitation was shown to be a crucial condition for the production of itaconic acid. For itaconic acid concentrations above 25 g/L, a significant product inhibition was observed. Performing experiments that simulated influences of possible pretreatment methods, U. maydis was only slightly affected by high osmolarities up to 3.5 osmol/L as well as of 0.1 M oxalic acid. The production of itaconic acid was achieved on pretreated cellulose in seawater and on the hydrolysed hemicellulosic fraction of pretreated beech wood.ConclusionThe fungus U. maydis is a promising producer of itaconic acid, since it grows as single cells (yeast-like) in submerged cultivations and it is extremely robust in high osmotic media and real seawater. Moreover, U. maydis can grow on the hemicellulosic fraction of pretreated beech wood. Thereby, this fungus combines important advantages of yeasts and filamentous fungi. Nevertheless, the biomass pretreatment does indeed affect the subsequent itaconic acid production. Although U. maydis is insusceptible to most possible impurities from pretreatment, high amounts of salts or residues of organic acids can slow microbial growth and decrease the production. Consequently, the pretreatment step needs to fit the prerequisites defined by the actual microorganisms applied for fermentation.

Highlights

  • In the last years, the biotechnological production of platform chemicals for fuel components has become a major focus of interest

  • Reference cultivation of Ustilago maydis on glucose A reference cultivation of Ustilago maydis MB215 was performed in Tabuchi medium with 120 g/L glucose and 1.6 g/L NH4Cl and cultivated in the Respiration Activity MOnitoring System (RAMOS) which allows the online monitoring of the respiration activity in shake flasks

  • Samples were drawn from parallel shake flasks to determine dry cell weight (DCW), cell number, and pH as well as the concentrations of ammonium, glucose, and itaconic acid

Read more

Summary

Introduction

The biotechnological production of platform chemicals for fuel components has become a major focus of interest. Since fossil fuels are limited, many current research projects are investigating the utilization of renewable resources to ensure the sustainable production of biofuels and platform chemicals. Most of these approaches have focused on producing alcohols from starch which competes with the food supply chain. Analogous to other organic acids such as citric acid or lactic acid, itaconic acid is mainly supplied by biotechnological processes with the fungus Aspergillus terreus (A. terreus) [6,7] This acid is mostly applied in the polymer industry for producing nitrilon, in the ion exchange chromatography sector, papermaking, and waste water treatment [7]. Detailed reviews regarding itaconic acid production, its biosynthesis, and its economic development can be found in Wilke and Vorlop [6] and Okabe et al [7]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.