Abstract

AbstractThree biomass gasification‐based hydrogen and power coproduction processes are modeled with Aspen Plus. Case 1 is the conventional biomass gasification coupled with a shift reactor, cases 2 and 3 involve integration of biomass gasification with iron‐based and calcium‐based chemical looping systems. The effects of important process parameters on the performance indicators such as hydrogen yield and efficiencies are evaluated by sensitivity analyses. These parameters include gasification temperature, molar ratios of steam to biomass in the gasifier, Fe2O3 to syngas in the fuel reactor, Fe/FeO to steam in the steam reactor, CaO to CO, and steam to CO in the carbonator. The energy and exergy balance distributions for the above three cases are comprehensively discussed and compared. Furthermore, techno‐economic assessments are performed to evaluate the three cases in terms of capital cost, operating cost, and leveled cost of energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.