Abstract

A negative productivity-diversity relationship was determined for biomass-dominant species at the community level. This study thus supports the hypothesis in which the effects of individual species on the productivity-diversity relationships at the community level are related to their biomass density, an important functional trait. The productivity-diversity relationships have been extensively studied in various forest ecosystems, but key mechanisms underlying the productivity-diversity relationships still remain controversial. The objective of this study is to explore the productivity-diversity relationships at the community level, and to investigate the roles of individual species in shaping the community-level relationships between productivity and diversity under different forest types. The study was conducted in two fully stem-mapped temperate mixed forest plots in Northeastern China: a natural secondary forest plot, and an old-growth forest plot. An individual-based study framework was used to estimate the productivity-diversity relationships at both species and community levels. A homogeneous Thomas point process was used to evaluate the significance of productivity-diversity relationship deviating from the neutral. At the species level, most of the studied species exhibit neutral productivity-diversity relationship in both forest plots. The percentage of species showing negative productivity-diversity relationship approaches linearly a peak value for very close neighborhoods (the secondary forest plot: r = 3 m, 38%; the old-growth forest plot: r = 4 m, 42%), and then decreases gradually with increasing spatial scale. Interestingly, only a few species displayed positive productivity-diversity relationship within their neighborhoods. Dominant species mainly exhibit negative productivity-diversity relationship while tree species with lower importance values exhibit neutral productivity-diversity relationship in both forests. At the community level, a consistent pattern of productivity-diversity relationship was observed in both forests, where tree productivity is significantly negatively associated with local species richness. Four biomass-dominant species (Juglans mandshurica Maxim., Acer mono Maxim.,Ulmus macrocarpa Hance and Acer mandshuricum Maxim.) determined a negative productivity-diversity relationship at the community level in the secondary forest plot, but only one species (Juglans mandshurica) in the old-growth forest plot. The productivity-diversity relationship is closely related to the dominance of individual species at the species level. Moreover, this analysis is the first to report the roles of biomass-dominant species in shaping the productivity-diversity relationship at the community level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call