Abstract

Biomass is a clean and renewable energy source. The efficiency for biomass conversion using conventional fuel conversion techniques, however, is constrained by the relatively low energy density and high moisture content of biomass. This study presents the biomass direct chemical looping (BDCL) process, an alternative process, which has the potential to thermochemically convert biomass to hydrogen and/or electricity with high efficiency. Process simulation and analysis are conducted to illustrate the individual reactor performance and the overall mass and energy management scheme of the BDCL process. A multistage model is developed based on ASPEN Plus® to account for the performance of the moving bed reactors considering the reaction equilibriums. The optimum operating conditions for the reactors are also determined. Process simulation utilizing ASPEN Plus® is then performed based on the reactor performance data obtained from the multistage model. The simulation results indicate that the BDCL process is significantly more efficient than conventional biomass conversion processes. Moreover, concentrated CO 2, produced from the BDCL process is readily sequesterable, making the process carbon negative. Several BDCL configurations are investigated for process optimization purposes. The fates of contaminants are also examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.